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Figure 1: Reconstruction pipeline. Input photographs (top left) depicting objects at different levels of detail. Multi-view stereo yields depth
maps (bottom left), which inherit these multi-scale properties. Our system is able to fuse such depth maps and produce an adaptive mesh
(right) with coarse regions as well as fine scale details (insets).

Abstract

Multi-view stereo systems can produce depth maps with large varia-
tions in viewing parameters, yielding vastly different sampling rates
of the observed surface. We present a new method for surface re-
construction by integrating a set of registered depth maps with dra-
matically varying sampling rate. The method is based on the con-
struction of a hierarchical signed distance field represented in an in-
complete primal octree by incrementally adding triangulated depth
maps. Due to the adaptive data structure, our algorithm is able to
handle depth maps with varying scale and to consistently represent
coarse, low-resolution regions as well as small details contained in
high-resolution depth maps. A final surface mesh is extracted from
the distance field by construction of a tetrahedral complex from the
scattered signed distance values and applying the Marching Tetra-
hedra algorithm on the partition. The output is an adaptive triangle
mesh that seamlessly connects coarse and highly detailed regions
while avoiding filling areas without suitable input data.
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1 Introduction

Surface reconstruction is an important problem with huge practi-
cal applications and a long history in computer graphics. The goal
is to build high quality 3D surface representations from captured
real-word data. Important applications include the preservation of
cultural heritage, model reverse engineering, and prototyping in the
multi-media industry. Typical inputs to surface reconstruction algo-
rithms are either unorganized points or more structured data such as
depth maps. In this work we will focus on the latter kind of data,
which is produced by range scanners and some multi-view stereo
algorithms. To fully capture an object of interest, multiple overlap-
ping depth maps are necessary, each covering parts of the object
surface. In a general acquisition framework, these depth maps need
to be aligned into a common coordinate system and fused into a
single, non-redundant surface representation. This process is called
the integration or fusion of depth maps.

One source of depth maps are multi-view stereo (MVS) systems,
which recently attained renewed interest [Seitz et al. 2006]. These
algorithms reconstruct the scene geometry from photographs of the
scene by regaining the 3D information lost during capture. Cur-
rent structure-from-motion systems [Snavely et al. 2008] are able
to recover the camera parameters of thousands of photographs un-
der very uncontrolled conditions. This enables modern MVS algo-
rithms to make use of the massive amount of Internet imagery for
geometry reconstruction [Goesele et al. 2007; Agarwal et al. 2009;
Frahm et al. 2010].

We desire to construct surface representations from the depth maps
delivered by these acquisition systems, which is still an unsolved
problem and difficult for various reasons. In particular, the pho-
tographs may be at different resolutions and show large variations
in viewing parameters. The resulting depth maps inherit these prop-
erties and imply vastly different sampling rates of the surface. As
in almost all acquisition processes, individual depth map samples
are not ideal point samples. Instead, they represent the surface at
a particular scale depending on viewing distance, focal length and
image resolution. The extent of individual pixels when projected
into 3D space can therefore dramatically vary in size. We call this
the pixel footprint. The issue of scale and pixel footprints is cru-
cial and requires particular care when mixing samples at different
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scales. To our knowledge, this has not been solved convincingly in
the surface reconstruction literature.

Apart from the scale issue, each depth map may be locally incom-
plete, i.e., contain regions without reconstructed depth values, a
common artifact of depth maps produced by multi-view stereo (see
Figure 1). Additionally, the individual depth values possess errors
and deviate from the ground truth surface. These errors depend on
the technology used to create the depth maps. Naturally, MVS ap-
proaches generate a different kind of (and much larger) error than
most active range scanning systems. Given a set of depth maps of
an object, some regions of the surface are typically seen by more
than one depth map. We want to make use of the redundancy to
suppress, or average out noise in the individual depth samples. In
contrast to techniques that produce water-tight surfaces, we want to
support incomplete representations and leave unobserved regions
empty while closing small holes. One well known approach that
handles these issues but does not take scale information into ac-
count, is volumetric range image integration (VRIP) [Curless and
Levoy 1996]. Our proposed approach is volumetric, builds on some
ideas developed in VRIP but solves the scale issue while sharing
advantageous properties. In particular, our contributions are

• a method to construct a discrete, multi-scale signed distance
field capable of representing surfaces at multiple levels of de-
tail, yielding a hierarchical signed distance field,

• a processing approach that supplements uncertain signed dis-
tance values at high resolution with data from a coarser scale,
regularizing the distance field,

• defining a continuous signed distance field from the hierarchi-
cal, incomplete and scattered signed distance values by build-
ing a bounded tetrahedral complex, and

• a surface extraction approach based on Marching Tetrahedra
[Doi and Koide 1991] to produce output surfaces that are
adaptive to the scale of the input data.

The remainder of this paper is organized as follows: We first give
an overview over previous work (Section 2) before we describe our
main concept in Section 3. A high level discussion of the algorithm
is given in Section 4. We show how to construct the hierarchical
signed distance field (Section 5) and present a regularization tech-
nique by combining data at different resolutions (Section 6). Our
approach for surface extraction is described in Section 7. We evalu-
ate the proposed algorithm and present results in Section 8. Finally
we conclude our work in Section 9.

2 Related Work

Surface reconstruction is an important topic for which a large vari-
ety of techniques have been proposed over the last decades. Most
reconstruction techniques aim at generating a piecewise linear sur-
face representation (such as a triangle mesh) from the input data.
Methods can be classified into reconstruction from unorganized
points and techniques that use the underlying structure of the data.
Examples of the former class include the classical work by Hoppe
et al. [1992], Moving Least Squares surfaces [Levin 1998], RBF-
based techniques [Ohtake et al. 2006], Poisson surface reconstruc-
tion (PSR) [Kazhdan et al. 2006], and Voronoi-based reconstruction
[Alliez et al. 2007]. These methods operate in the most general set-
ting and do not make any assumptions about the spatial structure
of the data. The motivation to deal with a more specific type of
input, namely depth maps, is that the acquisition process often pro-
vides us with additional information such as connectivity. Although
we can always fall back to unorganized point-based reconstruction
techniques by projecting all pixels of the depth maps in 3D space

to produce unorganized point samples, intuition suggests that we
should make use of the additional information to improve upon the
results [Levoy 2011].

In fact, most methods that deal with depth map integration apply
a depth map triangulation step first, where depth samples are con-
nected in image space to form a triangulated surface, which is then
lifted to 3D space. We can classify these methods into paramet-
ric surface representations, surface-based methods, and volumetric
methods.

Early works in the field of depth map fusion impose an object-
centered coordinate system for surface integration. Chen and
Medioni [1991] apply a global re-parametrization of the depth maps
into a unified parameter space. Integration is then simply a mat-
ter of averaging in the overlapping areas. Similarly, Higuchi et al.
[1994] integrate all data points into an object-centered parametric
representation and fit a deformable mesh in order to obtain a smooth
model. These techniques assume a simple topology such as a cylin-
der or a sphere, are therefore parametric, and restrict the input to
very simple and compact models.

Surface-based methods such as Mesh Zippering [Turk and Levoy
1994] or the co-measurements approach by Pito [1996] select one
depth map for each surface region, remove redundant triangles in
overlapping regions, and glue the remaining meshes together by
connecting the boundaries. These methods can handle noise by lo-
cal surface averaging of positions, but are very fragile in the pres-
ence of outliers and typically fail in regions of high curvature. In-
terestingly, these methods can, at least in theory, handle arbitrary
scales since they attempt to fuse triangulated depth maps directly,
and do not re-parameterize the data. Thus these methods work with
natural pixel resolution.

Hilton et al. [1996] introduced the idea of representing the surface
implicitly using a signed distance field computed from the individ-
ual depth maps. Curless and Levoy [1996] took this idea further
by taking into account the direction of the sensor uncertainty to
model the anisotropic behavior of sensor noise of the acquisition
device. As in most volumetric methods, the final surface can then
be extracted as zero-level set of the implicit function using standard
techniques such as Marching Cubes [Lorensen and Cline 1987].
Hilton and Illingworth [1997] propose a method to reduce mem-
ory consumption of implicit functions by constructing an adaptive
signed distance field stored in an octree. The octree level is adapted
to surface curvature bounding the approximation error. This ap-
proach still expects depth maps with similar scale and adapts the
octree with respect to geometric properties only.

Zach et al. [2007] cast the problem of depth map integration as
global optimization problem, minimizing an energy functional con-
sisting of a total variation regularization with an L1 data fidelity
term. L1 is more robust than L2 data fidelity in the presence
of noise and outliers, but is also very expensive: Although their
method produces impressive results, it is restricted to small and
compact objects sampled over regular volumes because computa-
tion time and memory consumption quickly become prohibitive.

It is worth noting that Point Set Surfaces [Alexa et al. 2001] based
on Moving Least Squares [Levin 1998] can produce implicit func-
tions, which can be evaluated over a hierarchy with respect to ap-
proximation error, the local feature size, or even local scale infor-
mation. Such a technique, however, requires that all sample points
(from all depth maps) are located in memory. Another disadvantage
is that a Point Set Surface can only define a smooth closed surface.
Guennebaud and Gross [2007] describe a technique to define object
boundaries but this requires an additional clipping normal for each
boundary input point. Similar drawbacks also apply to most other
point-based reconstruction techniques.



In this work, we address both multi-resolution input depth maps as
well as creating a final surface that is adaptive with respect to the
scale of the input data. While most volumetric methods operate on
regular grids, some techniques use hierarchical data structures, in-
cluding [Kazhdan et al. 2006; Hilton and Illingworth 1997; Soucy
and Laurendeau 1992]. Sometimes these (and similar) methods are
said to be “multi-resolution approaches”, which typically means
that the resulting mesh is adaptive. However, input data at vari-
ous scales is not addressed. Further, we show why methods such
as VRIP [Curless and Levoy 1996], Poisson Surface Reconstruc-
tion [Kazhdan et al. 2006] and Point Set Surfaces [Guennebaud and
Gross 2007] cannot be modified in an obvious way to handle multi-
scale input.

3 Concepts

In the noise-free case, i.e., if all samples are perfect, we would like
to reconstruct a surface from the samples corresponding to the high-
est resolution information available at that location. Thus, adding
infinitely many depth maps with lower resolution should not change
the reconstruction. In contrast, many existing techniques converge
towards the lower resolution surface if more and more low resolu-
tion depth maps are added. This issue is illustrated in Figure 2.

In VRIP, this behavior is very pronounced because the surfaces (ob-
tained by triangulating the individual depth maps) are resampled
into the volume without taking the scale into consideration. Com-
bining a single low resolution depth map with a high resolution
depth map considerably influences the high-resolution geometry.
In PSR, this issue is much less apparent because PSR considers the
density of the samples, and the amount of samples contained in a
depth map varies with the scale of the depth map. However, the
same behavior can be observed when adding the same density of
low resolution samples and high resolution samples. Thus, in gen-
eral, PSR has the same convergence behavior for n low resolution
depth maps with n→∞.

A weighting scheme that leaves out the contribution of coarse in-
formation is hard to realize: In a regular volume like in VRIP,
the required information is simply not present because the implicit
surface is not represented at different scales. In point-based tech-
niques, a single unreliable high-resolution sample potentially pro-
hibits the use of coarser information essential for reliable recon-
struction.

A more formal view on the issue of scale is given by scale space the-
ory [Lindeberg 1998]. Given an image, the scale space of the image
is constructed by introducing a parameter t of scale and convolving
the image signal with a Gaussian filter with variance t = σ2, thus
representing the image as one-parameter family of smoothed im-
ages, which is called the scale-space representation of the image.
This theory also applies to 3D images such as signed distance fields
(SDF). We assume that the SDF of a surface at a given resolution
can be approximated by a low-pass filtered SDF of the same surface
at higher resolution. The scale space parameter t has the interpreta-
tion that image structures of size t ≥ 1 (in pixel) have largely been
eliminated at scale t2. This interpretation suggests that we should
be careful when combining depth maps at different scales. In par-
ticular, if we want to keep structures of a specific size in a depth
map, say size t, we should avoid naı̈vly combining it with another
depth map at scale t2.

Another important aspect of our work is that noise in the depth maps
is typically coherent between samples from a single depth map, but
differs between samples from different depth maps at a different
scale. In particular, this is difficult for point-based reconstruction
techniques, since they can no longer exploit the fact that the consis-
tency in noise is tied to proximity. In fact, points that are spatially

Figure 2: Top: Point samples (red) with normals for a surface
sampled at low and high resolution (black curves). The recon-
structed surface (green) degenerates only slightly because the den-
sity of high resolution samples dominates. Bottom: Adding more
and more low resolution samples causes the surface to converge
towards the coarse geometry.

close together may have very different amount of noise and should
therefore be processed independently. In our system, we assume
a linear correlation between the scale and the expected noise of a
sample: For example, if the scale of two samples differs by a factor
of two, the depth uncertainty also doubles.

We assume that the input depth maps to our system are band-limited
such that they can be triangulated without significant aliasing arti-
facts. While this is the case for depth maps from most acquisition
systems (such as multi-view stereo and structured light scanners),
some technologies produce depth maps with different characteris-
tics. For example, LIDAR scanners typically produce samples with
a sample spacing that is substantially larger than their footprint.
This is due to the very small point spread function of the LIDAR
beam and these samples need additional filtering to suppress alias-
ing artifacts in the triangulated surface.

In the next section we describe the underlying ideas and proper-
ties of our technique before presenting the implementation details
in Section 5. We decided to approach the reconstruction problem
using a volumetric representation of the input data. Note, however,
that the principle behind our solution applies to other representa-
tions as well.

4 Algorithm

One of our key ideas is to separately aggregate the contributions of
the individual depth samples at their corresponding scale. We are
therefore able to select a suitable scale for final surface extraction
and avoid mixing up different scales. In order to do this, we ag-
gregate geometric information (in form of the SDF) in scale space,
i.e., the 3D Euclidean space plus one dimension of scale. We asso-
ciate a scale with each depth sample, which then only contributes
at that specific scale parameter in scale space at its 3D position. We
explain how we define the scale of a sample in the next section.

So far averaging of information would not be possible because over-
lapping regions in the depth maps rarely have exactly the same
scale. A common solution is to discretize the scale space into oc-
taves, which yields a hierarchical representation. The levels of the
octaves correspond to a doubling of scale, and all samples within



a single octave are combined to produce average surfaces. In the
(unlikely) case that all depth maps contribute to a single octave
only, the dataset has uniform scale, and our technique gracefully
degrades to the VRIP algorithm.

Assigning each sample to exactly one scale can lead to artifacts
near the boundaries of the octaves, because contributions are dis-
tributed between two neighboring octaves. We therefore transfer
geometric information from the coarser octaves to the finer octaves,
thus regularizing the fine geometry using the coarser one. Unreli-
able measurements, such as a surface seen at a grazing angle, are
pruned from the hierarchical SDF (hSDF). Finally, we extract the
isosurface from the hSDF by triangulating the zero-crossing corre-
sponding to the finest geometric information available.

5 Constructing the hSDF

We take as input a set of registered depth maps, generated, e.g., by
a range scanner or a multi-view stereo approach, optionally with
confidence values and colors. The depth maps are triangulated in
image space and the triangulation is lifted to 3D. If the depth dispar-
ity between two vertices of a generated triangle is above a thresh-
old, we assume a depth discontinuity and discard the triangle. To
dynamically choose the disparity threshold, we use our notion of
the pixel footprint. The pixel footprint F◦ is the width (or height)
of a fronto-parallel square corresponding to the pixel (u, v) in the
image, projected to its 3D location ~x(u, v) on the object. We detect
a depth discontinuity between two neighboring pixels if the depth
disparity is above a threshold ρ ·F◦, where F◦ is the footprint of the
pixel closer to the camera, and ρ is a user-defined constant. Trian-
gles where at least one edge contains a detected depth discontinuity
are discarded. We achieve overall good results with ρ = 5.

The next step of our algorithm inserts the triangulated depth maps
into the hierarchical signed distance field. Our hierarchy corre-
sponds to a primal octree, where each cube has eight voxels in the
corners and is subdivided into eight sub-cubes. These sub-cubes
create 27 new voxels, eight of these voxels coincide with voxels of
the parent node. We explicitly keep these duplicated voxels to re-
present information at different levels of the hierarchy. Technically,
we do not explicitly store the octree hierarchy, but insert all vox-
els into a map data structure, which maps the voxel index (l, Il) to
the voxel data. The index is composed of the level l and the index
Il ∈ {0, . . . , 23l − 1} within that level and uniquely determines
the position of a voxel with respect to the root node’s axis aligned
bounding box. Initially, the data structure is empty and voxels are
created as they are requested for the first time.

The triangles of each depth map are inserted one after another. For
each triangle a decision is made which octree level it affects. Again,
we use our notion of the pixel footprint to make that decision. Each
vertex of the triangle carries an associated footprint size from the
depth map pixel that generated the vertex, and we declare the small-
est footprint F◦ of the three triangle vertices as the representative
footprint of the triangle F4. To sample the triangle, we enforce
that the footprint F� of octree cells is smaller or equal to F4 ·λ−1,
where λ is the sampling rate. We typically set λ = 1 and define
F� as the edge length of the octree cell (i.e., the spacing between
voxels). The appropriate octree level lT for triangle T is efficiently
found by taking the binary logarithm of the root node’s footprint
FR� divided by the maximum sample spacing F4 · λ−1:

lT = d log2

(
FR� · λ
F4

)
e (1)

Once we computed the level lT of triangle T , we need to identify all
affected voxels, i.e., those voxels that fall in a band around the tri-
angle. This is controlled by the ramp length, see Curless and Levoy

Figure 3: Truncated tetrahedron created by shooting rays from the
sensor center c through the vertices of triangle T . The ramp length
is denoted by r.

[1996] for details. The ramp length γ · F� is calculated by multi-
plying the footprint F� of the octree cell with the ramp size factor
γ; thus the ramp length is constant for each octree level. The ramp
length factor should be chosen according to the expected maximum
noise of the data set and the scanning technology; reasonable pa-
rameter values are between γ = 2 for clean, range scanned data
and γ = 8 for MVS datasets with heavy noise.

To identify affected voxels, we extrude the triangle T by following
the rays from the sensor center through the triangle vertices. We
bound the resulting cone and limit the volume to the ramp length
around the triangle; this yields a tetrahedron with one corner trun-
cated, see Figure 3. To simplify things, we create the bounding box
of the truncated tetrahedron and analytically identify the indices of
all voxels, yet created or not, inside the bounding box. We calcu-
late the signed distance from each voxel to the triangle by shooting
a ray from the camera center through the voxel and either create or
update the voxel on hitting the triangle.

When creating a new voxel, we assign a weight value in addition to
the distance to the voxel. Our weight value is calculated similar to
VRIP [Curless and Levoy 1996]: We multiply individual weights
for angle deviation (the dot product between the ray and the hit
point normal), a truncated tent weight function of the absolute dis-
tance, and the confidence value at the hit point, linearly interpolated
from the mesh vertices. When updating a voxel x, we use the fol-
lowing cumulation rules [Curless and Levoy 1996]:

Wi+1(x) = Wi(x) + wi+1(x) (2)

Di+1(x) =
Wi(x)Di(x) + wi+1(x)di+1(x)

Wi+1(x)
(3)

where di(x) and wi(x) are the signed distance and weight values
from the ith range image, and Di(x) and Wi(x) are the cumula-
tive signed distance and weight values after inserting the ith range
image. For the rest of this paper, we interchangeably use the terms
weight of a voxel and confidence of a voxel.

A particular surface structure can appear quite differently depend-
ing on the scale of the image (or depth map) representing the sur-
face. Thus different geometric representations of the same surface
may deviate from each other. This deviation can potentially lead
to duplicated surfaces in the output mesh, see Figure 4 for an illus-
tration. To avoid duplicated surfaces, one could use infinitely large
ramps, such that voxels at coarser levels are overridden, but this is
not feasible in practice. If the deviating surface at level l is, how-
ever, within the ramp of the surface of level l+1, the duplication is
detected and overridden. To make this mechanism work over sev-
eral scales, we additionally insert the depth maps into a few coarser
levels. In our experiments, we always use four coarser levels.



Figure 4: Left: A high-resolution and a low-resolution depth map
of the same surface and the voxels that sample the depth maps at
different scales. Green and red voxels are in front of and behind the
surface, respectively. Right: The isosurface extracted from the dis-
tance field yields artifacts, which we avoid by inserting at coarser
scales.

6 Regularizing the hSDF

The hierarchical signed distance field now contains a sampled rep-
resentation of all input depth maps at various scales, depending on
the footprints of the inserted triangles. The representation is in-
complete, i.e., contains holes in unseen or unreconstructed regions.
But even in areas where data is available, it might be very unre-
liable, having a low confidence value caused by, e.g., uncertain
reconstruction or surfaces seen at grazing angles. Our goal is to
improve these unreliable samples by transferring distance and con-
fidence measures from coarser levels where available.

We make a pass through the hSDF in coarse-to-fine order, search-
ing for occupied voxels with confidence wl below a threshold τ0.
For each of these sub-confident voxels at level l, we interpolate its
distance value from distance values at coarser level l − 1 if all re-
quired voxels at that level are occupied. The number of required
voxels varies, depending on the voxel position in the hierarchy: If
a voxel at level l coincides with a voxel at level l − 1, only the co-
inciding voxel is required for “interpolation”. The other possible
configurations require two, four, or eight voxels at the coarser level
for interpolation.

We perform a weighted blend of the distance and weight values.
Since the weight at the coarser level l − 1 can be arbitrary high,
we adapt the reasoning of Mitchell [1987] to this case (similar to
Gortler et al. [1996]) and clamp the confidence values to τ0 to avoid
oversmoothing. τ0 can be seen as saturation threshold. The blended
voxel x with distance d̃l and weight w̃l at level l then becomes:

d̃l =
dl · wl + dl−1 · (τ0 − wl) ·min(1,

wl−1

τ0
)

wl + (τ0 − wl) ·min(1,
wl−1

τ0
)

(4)

w̃l = wl + (τ0 − wl) ·min(1,
wl−1

τ0
) (5)

If the blended confidence w̃l remains below a second threshold
τ1 ≤ τ0, we delete the voxel from the octree since it is not reli-
able enough for reconstruction. Voxels that could not be updated
due to missing information at level l − 1 with confidence wl < τ1
are deleted.

The saturation threshold τ0 as well as the confidence threshold τ1
need to be chosen according to the dataset. The confidence thresh-
old is similar to the one in VRIP, that is often used to remove clutter
in the reconstruction. If the dataset contains little redundancy, i.e.,
most regions are observed by one or two depth maps only, reason-
able values are τ0 = 0.5 and τ1 = 0.1. For scenes with higher
redundancy where regions are seen by more depth maps, the thresh-
olds can be increased.

After all voxels have been processed, there are still duplicated vox-
els at different levels in the hierarchy. Since all unconfident voxels

have been deleted, we ultimately trust in the remaining voxels at the
highest resolution. Hence we take another pass through the octree
in fine-to-coarse order and delete for each occupied voxel at level l
all coinciding voxels at coarser levels {l − i | 1 ≤ i ≤ l}.

7 Extracting the ISO Surface

In the previous step we converted the hierarchical signed distance
field to a scattered signed distance field by deleting unconfident and
duplicated voxels. Each voxel has an associated distance value as
well as optional per-voxel attributes. Although the 3D positions of
the voxels are structured as they are derived from a primal octree,
isosurfacing turns out to be a difficult problem.

Most prior methods apply the Marching Cubes (MC) algorithm
[Lorensen and Cline 1987] to the implicit function, but this only
works for regular samplings. Several approaches have been devel-
oped to get around this limitation, some of them require knowledge
of the original signed distance function, others demand restrictions
on the octree topology, i.e., require that the level difference between
adjacent leaf nodes must not be greater than one. Dual methods
pose less restrictions but require hermite data [Ju et al. 2002] or
can introduce topological artifacts [Schaefer and Warren 2005]. A
more recent technique [Kazhdan et al. 2007] solves these issues but
requires an octree where each non-leaf node has all eight children
allocated. Schroeder et al. [2004] use a unique global point num-
bering (vertex indices) to produce compatible triangulations across
cell boundaries. We are, however, not aware of a suitable modifica-
tion that generalizes the method to incomplete octrees. So none of
the direct methods we know of applies to our case.

7.1 Creating the Complex

We therefore use a more general approach and consider our voxels
as scattered samples of the signed distance field. We apply a global
Delaunay tetrahedralization [Doi and Koide 1991] to all voxel po-
sitions. This yields a tetrahedral complex that covers the convex
hull of all voxels. The downside of this approach is that the shape
of the data domain (which is typically not convex) is not taken into
account, and some tetrahedra connect unrelated parts of the dis-
tance field with each other. Thus erroneous interpolation between
unrelated regions becomes possible, creating phantom surfaces.

To remove these tetrahedra, we define a neighborhood relation on
the voxels. We then delete all tetrahedra that contain at least one
edge between non-neighboring voxels. When this relation is care-
fully designed, we can not only detect those tetrahedra that bridge
unrelated parts of the implicit function but also exploit the generic
Delaunay tetrahedralization to fill small holes in the surface, by
keeping some tetrahedra that would have been removed otherwise.

Figure 5: The voxel neighborhood in 2D. The neighborhood of the
center voxel (red) at level l consists of all voxels at levels≥ l within
the blue square (the 9-neighborhood at level l). In addition, the n-
ring (here: 1-ring) around the blue square at each level ≥ l is also
part of the neighborhood of the red voxel.



Figure 6: Data sets with negligible scale differences. Left: The Stanford Bunny reconstructed from the original range images. Right: The
temple data set from the multi-view stereo evaluation effort from Seitz et al. [2006].

Consider two voxelsA andB at different levelsL(A),L(B). With-
out loss of generality, assume A is the voxel at a coarser level. We
define voxels A and B as neighboring if B is contained in the cube
that is spanned by the 27-neighborhood of voxel A. Additionally,
we enlarge this neighborhood by n voxels in each direction at the
finer level of B. Thus, we can express the maximum extent of the
neighborhood in each direction at the level ofB as 2L(B)−L(A)+n.
The same rule applies for voxels at the same level, which yields a
neighborhood distance of 20 + n = n+1. We typically use n = 2
for very conservative hole filling. See Figure 5 for an illustration of
the neighborhood relation in 2D.

7.2 Extracting the Surface

We now apply the Marching Tetrahedra algorithm [Doi and Koide
1991] to the resulting tetrahedral mesh. The extracted surface mesh
is adaptive, with fewer triangles in regions where only coarse in-
formation is present and more triangles in detailed regions modeled
by high-resolution depth maps. Due to the nature of the March-
ing Tetrahedra algorithm, the triangulation contains a lot of poorly
shaped triangles that do not contribute much to the accuracy of the
surface. To address this, we optimize the tetrahedralization for sur-
face extraction similar to Schaefer and Warren [2005]. For each
edge in the tetrahedral mesh with a zero crossing that is located very
close to one of the edge vertices, we pull the vertex along the edge
onto the crossing and set its distance value to zero. In combination
with a simple modification of the Marching Tetrahedra algorithm to
prevent zero-area faces, this results in significantly less degenerate
triangles, see Figure 7.

Figure 7: Optimized isosurface extraction. The original MT trian-
gulation (left) and the optimized triangulation (right) obtained by
pulling vertices of the tetrahedral mesh to the zero crossing.

Applying Marching Tetrahedra is an attractive choice for isosurface
extraction because of its stability, simplicity and performance. The
downside of this simple approach, however, is the vast amount of
tiny triangles that are created. Delaunay-based meshing algorithms
[Boissonnat and Oudot 2005] are more involved but produce well
sampled, guaranteed-quality triangle meshes.

8 Evaluation and Results

We now present some results on various datasets. Figure 6 (left)
shows a reconstruction of the Bunny dataset from laser scanned
range images provided by the Stanford Scanning Repository. This
dataset has negligible scale variations, thus triangles are typically
inserted at a constant level. In this case, our algorithm grace-
fully degrades to the behavior of and produces very similar results
to VRIP. One difference, however, is that the parameters of our
method are more intuitive. We simply set the sampling rate λ = 1
and the ramp size factor γ = 4, and our algorithm determines the
appropriate voxel spacing, which needs to be explicitly specified in
VRIP. Since all depth values have more or less the same footprint,
we can omit the regularization step, setting τ1 = τ0 = 0.

Figure 6 (right) shows a reconstruction of the Temple data set from
the Middlebury MVS evaluation effort [Seitz et al. 2006]. We first
recovered the depth maps from the 312 input images using the MVS
system by Goesele et al. [2007], and fused all depth maps using
ramp size factor γ = 8 and sampling rate λ = 1. Note that we used
the same MVS system for all reconstructions.

Our next dataset consists of over 700 photographs of the Cathedral
of Notre Dame de Paris downloaded from Flickr with vastly differ-
ent resolutions and viewing parameters. This dataset is challenging,
contains very uncontrolled images taken with different cameras,
thus the depth maps are tainted with a lot of noise (see Figure 8 for
our surface reconstruction result). Since people tend to make most
photos of the center portal, we focused our attention to that region
for a comparison with VRIP and Poisson, see Figure 9. To make
the comparison fair, we specified a bounding box around the cen-
ter portal for VRIP and Poisson, and reconstructed only within this
region. Even though VRIP and Poisson operated on a subset of the
data, our reconstruction shows more detail and yields a more crisp
result, but also more noise. The influence of coarse depth maps on
the VRIP reconstruction quality is clearly visible; for Poisson this
effect is less visible but still noticeable.

We captured a dataset called Stones (118 photographs) that shows
a metal door next to a wall built of stones. Each image represents
the geometry at a different scale as we moved closer to the wall
while taking the images. The reconstruction consists of various,
seamlessly connected scales, from coarse regions to highly accurate
geometry on the order of millimeters (see Figure 10).

Finally, we evaluate our reconstruction pipeline with a large MVS
dataset called Citywall (see Figure 1) consisting of 561 photographs
and corresponding depth maps. We reconstructed each depth map
with resolution 500 × 375. In this scene, the footprint of the indi-
vidual depth samples varies dramatically. A focus in this scene was
the detailed reconstruction of the fountain with its two lion heads
and the replica of the historic city, see Figures 11 and 12.



Figure 8: Some input photographs of the facade of Notre Dame
de Paris that show the variations in scale (top row), and a surface
reconstruction from about 700 depth maps (bottom row).

Figure 9: A comparison of VRIP (left), Poisson surface reconstruc-
tion (middle) and our reconstruction (right). Both VRIP and Pois-
son reconstructions are smoother but also less detailed.

We compare our full reconstruction with a Poisson surface recon-
struction of the fountain. To do this, we clipped all samples with a
bounding box around the fountain and provided the clipped point
set to PSR. The reconstruction clearly shows an overly smooth
result, caused by many low-resolution samples from depth maps
taken further away from the surface (see Figure 13).

The running time and memory consumption of our algorithm is de-
pendent on the amount, resolution, and scale of the input depth
maps. Reconstruction details are given in the Table 1. The table
shows the name of the dataset, the number of fused depth maps,
the resolution of the depth maps (if uniform), the time required for
reconstruction, and the number of generated voxels.

9 Conclusion

We presented a hierarchical, volumetric approach for depth map
fusion that takes into account the scale (or footprint) of the indi-
vidual depth samples to extract adaptive, high-quality surfaces. Al-
though the basic principle of our algorithm is inspired by VRIP
[Curless and Levoy 1996], the new algorithm is, to our knowledge,
the first successful attempt to handle multi-resolution data. Our re-
sults show a clear improvement over traditional depth map fusion
techniques.
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Figure 10: The top row shows some input images from the Stones
dataset, and the middle row shows the reconstructed scene. The
bottom row shows a close-up view of our reconstruction with and
without texture (left, middle), and the corresponding VRIP recon-
struction (right).

Name DMs Resolution Time Voxel
(pixel) (hrs, min) (106)

Notre Dame 715 mixed 7h + 1h + 4m 103
Stones 118 1000×750 2h + 23m + 2m 41
Citywall 564 500×375 6h + 1h + 4m 49

Table 1: Statistics of the reconstruction results. The individual tim-
ings are for constructing the octree, building the tetrahedral mesh
and extracting the isosurface, respectively.
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