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Abstract. For segmenting complex structures like vertebrae, a priori
knowledge by means of statistical shape models (SSMs) is often incor-
porated. One of the main challenges using SSMs is the solution of the
correspondence problem. In this work we present a generic automated
approach for solving the correspondence problem for vertebrae. We de-
termine two closed loops on a reference shape and propagate them con-
sistently to the remaining shapes of the training set. Then every shape
is cut along these loops and parameterized to a rectangle. There, we op-
timize a novel combined energy to establish the correspondences and to
reduce the unavoidable area and angle distortion. Finally, we present an
adaptive resampling method to achieve a good shape representation. A
qualitative and quantitative evaluation shows that using our method we
can generate SSMs of higher quality than the ICP approach.

1 Introduction

Segmentation of vertebrae is necessary for several clinical applications such as the
treatment of severe herniated vertebral disks or the insertion of pedicle screws.
Segmenting vertebrae is a challenging task [12]. Besides local image artifacts or
noise, different vertebrae lie close together and are difficult to distinguish from
each other and from the adjacent rib cage. Therefore, a general approach is to
use a-priori information by means of statistical shape models (SSMs) to make
the segmentation more robust. An SSM contains information about the mean
of the training set and the possible variations from the mean. For a detailed
discussion of SSMs we refer to the review of Heimann et al. [10].

One of the main challenges using SSMs is to establish correspondences in
the training data set. Each training shape has to be represented by the same
number of 3D points (also called landmarks) and landmarks representing the
same anatomical feature should have the same index. A common way to solve
this problem is to parameterize every surface to a common base domain and
to establish the correspondences on this parameter space. Current work in this
context focuses on genus 0 objects such as liver or kidney [2, 5, 9, 14]. Visually
spoken, the genus describes the number of holes of a surface. Only Lamecker
et al. [13] presented a method independent of the genus, where they employ
manually defined patches for each shape and parameterize every patch to a disk.
Using this approach, discontinuities may occur along the cuts.
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Fig. 1. Overview of our algorithm. Our contributions are printed in italics.

In this work we present an automated approach designed for closed surfaces
of genus 1 like vertebrae (see Figure 1). We do not rely on a simple Iterative-
Closest-Point (ICP) based approach [1] only, since this algorithm does not take
into account the triangle structure of the mesh. Hence, flipped triangles in the
aligned shapes may occur (see Figure 2).

Related work: Concerning the establishment of correspondences on the pa-
rameter space, approaches similar to ours are those of Brett and Taylor [2] and
Meier and Fisher [14]. Both work on a parameter space but do not reduce any
distortion. Another approach is the work of Davies et al. [5], which is based
on information theory. Here, the so-called Minimum Description Length (MDL)
function is minimized over the parameter space. We do not use this objective
function, since it is more costly than our approach.

A lot of research has been done in the area of mesh parameterization. For a
detailed overview we refer to the Siggraph Course Notes of Hormann et al. [11].
When mapping a 3D shape to a plane rectangle, distortion of angle and area is
unavoidable in most cases. Tewari et al. [17] presented an algorithm for meshing
genus-1 point clouds via parameterization. Since they do not sample on the
parameter space but reconstruct the shape by inverting the parameterization,
they do not have to consider distortion. Tailored to the parameterization of
genus-1 meshes is the work of Steiner and Fischer [16]. While they consider
angular distortion, no area distortion is taken into account. However, for a high-
quality resampling on the parameter space, it is crucial to minimize both angular
and area distortion [6, 11]. Only few algorithms exist which minimize both kinds
of distortion simultaneously. We choose Degener et al.’s approach [6] since they
use a differentiable energy and can obtain a parameterization which is optimal
for uniform sampling.
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ICP Our Algorithm 

Fig. 2. Comparison of vertebrae after correspondence establishment (with the same
number of triangles). Using ICP (left), triangle flips occur (red boxes), while our algo-
rithm prevents them (right).

Contributions: Our work has the following contributions:

1. We automatically construct a statistical shape model for vertebrae. To the
best of our knowledge, this is the first approach without any manual inter-
action apart from the simple ICP approach.

2. We present an algorithm for the consistent propagation of two reference loops
to the remaining training set.

3. We introduce a correspondence term based on point-to-point distances and
combine it with Degener’s energy [6] in order to establish both accurate
correspondences and a good reconstruction quality after uniform sampling.

4. We present a new algorithm for curvature adaptive resampling of the pa-
rameter space to further improve the shape representation.

2 Methods

The input of our algorithm is a set S = {si : i = 1, ..., k} of training surfaces,
the so-called shapes, extracted from expert segmented image data. Each shape
is approximated by a triangle mesh M = (P, T ), where P consists of the ap-
proximating points Pj , j = 1, ..., n and T contains the triangles describing the
connectivity of the points. For a given index j of a node we write Pj for the 3D
world space coordinates and pj for the 2D parameter space coordinates. In the
following we describe how to establish the correspondences for this training set.

Reference Mesh: We select a randomly chosen reference shape sRef . From
topology we know that we have to cut a surface of genus 1 along two cut loops
in order to make it homeomorphic to a rectangle in the plane. For an introduction
to topology we refer to the book of Munkres [15]. Let GRef = (VRef ,KRef) be
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the corresponding graph to sRef with vertices VRef and edges KRef . On this
graph, we determine the shortest set of loops with a common basepoint using
the automatic algorithm of Erickson and Whittlesey [7]. We do this for every
point of the triangle mesh and choose the shortest set of loops over all basepoints.
Here, we use the Euclidean distance to weight the edges. The found loops span
the fundamental group [15] of the vertebra given the basepoint bRef .

After the two cut loops have been found on the reference mesh, we parame-
terize it to a rectangle using Tutte’s graph embedding method [18] with uniform
weights. For mapping the boundary, we map each loop to an edge of the rectan-
gle and create a copy which we map to the opposite edge (see Figure 1). In doing
so, opposite edges are identified, so that the corresponding quotient space [15]
of the rectangle is homeomorphic to a torus.

The distortion of angle and area on the parameter space leads to a bad
shape representation when sampling uniformly on the parameter space. Degener
et al. [6] minimize in every node an energy which reduces both angle and area

distortion. It is defined as EDeg
j =

∑
T∈1-ring(j)Eangle(T )Earea(T ) for every node

j = 1, ..., n, where the set 1-ring(j) contains all triangles T such that j ∈ T ,

Eangle(T ) =
a2 · cotα+ b2 · cotβ + c2 · cot γ

2 area(T )
and (1)

Earea(T ) =
area(T3D)

area(T )
+

area(T )

area(T3D)
. (2)

The variables a, b and c represent the edge lengths of the triangle T in the
parameter space and α, β and γ describe the opposite interior angles of the
corresponding triangle T3D in the world space. We use this differentiable energy
to reduce the area and angle distortion on the parameter space. We additionally
reduce the distortion at the boundary by employing a free-boundary optimiza-
tion that allows the boundary to move. Points leaving the rectangle on one side,
are inserted again on the opposite, identified side.

Remaining training set: Since we want to cut approximately along the same
anatomical paths for each training shape, i. e. find consistent loops, we propagate
the two reference loops to the remaining training shapes as follows: We first
align every remaining training shape si, i = 2, ..., k, to the reference mesh using
the Iterative-Closest-Point (ICP) method, integrating normals in the similarity
criterion. We then propagate the reference basepoint bRef by choosing the nearest
neighbor on si. Again, we apply Erickson and Whittlesey’s algorithm to the
propagated basepoint bi, but we introduce a new cost function for the edges
based on the distance to the reference loops. Let LRef contain the points of
the two reference loops. Then the cost function ci : Ki −→ R+ for the graph
Gi = (Vi,Ki) of the shape si is defined as follows:

ci(j1, j2) = 0.5[ min
ζ∈LRef

(||P ij1 − P
Ref
ζ ||) + min

ξ∈LRef
(||P ij2 − P

Ref
ξ ||)]. (3)

In this way we ensure that the propagated loop Li is close to the reference
loop LRef . Furthermore, Erickson and Whittlesey’s algorithm guarantees that
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we obtain a shape homeomorphic to a rectangle by cutting along the propagated
loops. Hence, the propagation of the loops is assured to be successful.

Subsequently, the current shape si is parameterized in the same way as the
reference mesh but with the difference that we also establish correspondences:
Remember that every shape si is aligned to the reference mesh via ICP. This
global alignment for establishing correspondences can lead to flipped triangles as
the ICP algorithm ignores the triangulation. Therefore, we minimize an energy
over the parameter space. This energy is defined as Ej = ECor

j + λEDeg
j , where

ECor
j describes the correspondence term, EDeg

j is responsible for reducing the

distortion and λ ∈ R+
0 is a free parameter which has to be chosen appropriately.

Let Nq
ICP(j) contain the indices of the q nearest neighbors (in our case q = 8) on

the reference shape of the node j on the current shape si. For the correspondence
term we use a soft-nearest neighbor approach and define our energy as

ECor
j =

∑
k∈Nq

ICP(j)

wjk||pij − pRef
k ||, (4)

where the weights wjk = exp(−||P ij − PRef
k ||) describe the distance between the

point j on si and the point k on sRef in the 3D world space. To achieve a good
shape representation, we add to this correspondence term the distortion energy
EDeg
j which we already used for sRef . Like Degener et al. [6], we minimize the

combined energy Ej for j = 1, ..., n using the Polak Ribière method. Triangle
flips are avoided by restricting every node to the kernel of its 1-ring.

In this way we parameterize every shape consistently to the parameter space,
where we establish correspondences and reduce the resulting distortion.

Adaptive Resampling: Once the parameterizations are in correspondence,
we can define a common sampling grid in order to reconstruct corresponding
landmarks for each shape from its parameterization. During reconstruction, a
compromise between two conflicting goals must be established: The more land-
marks we use, the greater becomes the gap between the number of training
shapes and their dimension. Conversely, we need enough landmarks to obtain an
accurate model of the shape which contains every relevant feature. Obtaining a
sparse, yet accurate description of the vertebral shape is particularly challeng-
ing. While the vertebral body has a relatively simple geometry, the vertebral
processes are thin regions with high curvature. Therefore, it is reasonable to
use a curvature adaptive strategy for landmark sampling. Adaptive sampling
schemes for SSM construction have been proposed by Heimann et al. [9] and
Cates et al. [3]. Heimann et al. use adaptive sampling exclusively to compen-
sate for area distortion in the parameterizations. The particle system method of
Cates et al. adaptively oversamples features with high curvature, but does not
inherently produce a consistent triangulation for all shapes.

We first construct a dense, uniform sampling grid that is used to sample the
parameter space. The large number of sampling points and the low distortion of
the parameter spaces ensure that all details of the input shapes are preserved.
We average all densely reconstructed shapes to a mean mesh M, and use a
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(a) Mode 1 of SSM constructed via
ICP using normals

(b) Mode 1 of SSM constructed using
our algorithm with λ = 0.00025

Fig. 3. Comparison of SSMs. The first mode of the respective SSM is shown for 2σ (first
row) and −2σ (second row), where σ describes the standard deviation. Local artifacts
occur in the SSM constructed via ICP using normals. These artifacts are eliminated
with our algorithm, which leads to an SSM of higher quality.

state-of-the-art remeshing algorithm [8] in order to obtain a sparse, curvature

adaptive representationMAdap
ofM. Because the initial, uniform sampling grid

defines a parameterization of M, and all points of MAdap
lie on the surface of

M, we can compute the parameter space coordinates of the points ofMAdap
by

simple linear interpolation. These parameter space coordinates define the final,
adaptive sampling grid. It is used to sample sparse landmark representations of
all input shapes, from which we compute the SSM.

3 Experiments and Results

For our experiments, we used a training set of 14 manually segmented lum-
bar vertebrae (L1–L3) from CT scans of five different patients. We established
correspondences for this training set with our algorithm using different λ. For
comparison, we also used the ICP algorithm including normals in the similarity
criterion as done by Brett and Taylor [2]. Then we constructed the corresponding
SSMs using the standard approach by Cootes et al. [4]. The different λ for our
algorithm indicate how much weight we give relatively to the Degener term for
the different SSMs. As the Degener term is numerically much higher than the
correspondence term, we note that the factor λ does not reveal anything about
the absolute ratio of the two energies.

In Figure 3 we show that the local artifacts caused by ICP can be avoided
with our algorithm, which leads to SSMs with higher quality. Furthermore, we
evaluated the SSMs using the measures of generalization and specificity as pro-
posed by Davies et al. [5] (see Figure 4). For calculating those measures, we
sampled 1000 normally distributed model instances and compared them to the
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Fig. 4. Evaluation of SSMs using the generalization and specificity measure [5], vertical
bars indicating the standard error of the mean. The x-axis gives the number of modes
used in the experiment. The generalization values (left) are very similar, while our
algorithm has better specificity values (right) from mode 5 on.

training set using the Hausdorff metric [15]. We did not use the compactness
measure since the ICP algorithm may lead to a loss of detail, but loss of detail
leads to a better compactness. Hence, we cannot get reliable information about
the quality of the SSM using the compactness measure.

We observe that from mode 5 on the specificity measure of our algorithm
is better than that of the ICP, while for the generalization, results lie too close
together to determine any rank order. To be more specific, all values of our
algorithm lie within the interval of the standard error of the ICP.

4 Discussion

We presented an approach for automatically solving the correspondence problem
for vertebral shapes. To the best of our knowledge it is the first automated
approach to construct SSMs for vertebrae aside from the simple ICP approach.
We ensure that for every shape of the training set we cut approximately along
the same anatomical paths. When every shape is parameterized to the rectangle,
we optimize the correspondence by minimizing a novel combined energy function
based on point-to-point distances which additionally penalizes distortion.

For a good reconstruction of the shape, we developed an enhanced method
for adaptive resampling which is independent of the underlying parameter space.
In contrast to the method of Heimann et al. [9], we do not need to use different
maps to sample different regions of the parameter space, even if the parameter
space is the unit sphere. The remeshing algorithm does not only distribute land-
marks on the mean shapes adaptively according to curvature, but also favors
equiangular triangles. Thus, it implicitly compensates for small distortion in the
parameterizations.

The benefit of our approach over ICP is that it is designed to avoid triangle
flips and thus ensures a topological consistent shape model. Experiments show
that our SSMs generalize as well as the ICP model, while their specificity is even
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better. Another advantage of our method is its generality in the sense that it can
be used for any surface of genus 1 and furthermore, any (differentiable) objective
function can be used for the correspondence establishment on the parameter
space. Hence, it would be interesting to test other correspondence energies such
as the MDL function [5] to see if the correspondences can be further improved.
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