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Abstract
A successful approach in triangulating point set surfaces is to apply operations, like a projection operator for
advancing front algorithms, directly to Moving-Least Squares (MLS) surfaces. The MLS method naturally handles
noisy input data and is especially useful for point clouds derived from real-world solids. Unfortunately, MLS is
computationally extensive and complex. We present a novel projection method that does not require solving a non-
linear optimization problem as MLS does. We create a polynomial approximation of the surface similar to MLS but
our method adapts the degree of the polynomial with respect to the points to be approximated. The approximated
points are iteratively collected compromising connectivity information. We enhance the orientation of the local
coordinate system to further improve the method. The results confirm that our method is more robust and also
accelerates triangulation due to a preprocessing step that needs to be done only once per data set.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.5]: Mesh Generation—.

1. Introduction

Various approaches that reconstruct a continuous surface
from its discrete representation as point clouds are known.
A common and versatile continuous surface representation
are meshes. They are efficient in memory consumption and
can be processed with high performance on current graph-
ics hardware. Therefore, the construction of meshes has re-
ceived a lot of attention and a substantial amount of litera-
ture, algorithms and techniques on this topic has been pub-
lished. The generation of a mesh aims at finding a partition
of the surface domain which is, in our case, given in form of
a discrete representation as unstructured point cloud P . The
elements of the partition are typically triangles or quads. The
notion of quality of the resulting mesh has several meanings
and can refer to the sampling rate, regularity, size or shape
of the elements. To obtain a triangulation from some surface
representation one can choose between several approaches.
We give a brief overview of this related work in Sect. 2.

A certain type of method depends on a projection which
maps newly created vertices onto the surface. These pro-
jective methods are especially well suited for advancing
front algorithms which allow for generation of high-quality
meshes that adapt to surface curvature. A very popular
projective method is the Moving-Least Squares (MLS) ap-
proach for surface reconstruction. The power of MLS sur-

Figure 1: Triangulation of the Lucy model with our method.

faces is the ability to naturally cope with input noise in the
data. Input noise is derived from the fact that most point
clouds are obtained through a three dimensional scanning
device to create an initial representation of the physical solid.

However, we show that the MLS approach has some defi-
ciencies and can lead to problems in the computation of both
the tangent plane and the polynomial approximation of the
surface. Additionally points that are beyond the vicinity of
the surface are not guaranteed to be correctly projected with
MLS. We propose a new projection method that does not
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involve a non-linear optimization or similar problem. Fur-
thermore, our method can project points which have an arbi-
trary distance to P . In a first step we find a local parameter
domain; this is closely related to the Cocone [ACDL00] al-
gorithm. In a second step we approximate the surface by a
polynomial. Unlike MLS, we do not use a fixed polynomial
degree but adapt the degree depending on the location of the
points to be approximated.

2. Related work

Some authors proposed to construct an implicit function
from P that partitions the space into interior and exterior
[HDD∗92, Kol05]. The surface is then defined by the func-
tion’s kernel [BW97]. As a result these functions nicely
close unintended gaps in the point cloud but are not able
to reconstruct surfaces with borders. The final surface is
often extracted as a triangular mesh by applying marching
cubes. However, this usually leads to aliasing or oversam-
pling and badly shaped triangles. Computational geometry
approaches such as Alpha Shapes [EM92, BB97], (Power)
Crust [ABK98, ACK01] and Cocone [ACDL00] usually ap-
ply a Delaunay triangulation as a basic step. Although these
methods often provide theoretical reconstruction guarantees,
a common problem is the direct reflection of measurement
noise. The number of generated vertices and triangles cannot
be directly controlled but is related to the cardinality of P .

Advancing front algorithms [Har98, SFS05] successively
construct a triangulation from the border of the triangulated
domain (the front), starting with an initial triangle. New
points are predicted and then projected onto a locally re-
constructed surface. This can be done with e.g. the MLS
method [Lev98, ABCO∗03]. In a first step the MLS method
calculates the tangent plane of the surface near the point
that is to be projected. Next, the surface is locally approxi-
mated with a polynomial in the parameter domain defined by
the tangent plane. Unfortunately, finding this plane involves
a non-linear optimization problem that can only be solved
numerically. Scheidegger et al. [SFS05] propose a heuristic
to find an appropriate initial value for the gradient descend
solver. To be able to robustly solve the involved optimization
problem the point to be projected must be within the vicin-
ity of P . Furthermore, as pointed out by [AK04], the correct
solution of the optimization problem does not always lead
to a tangent plane of the surface but can significantly differ
from the correct plane. Calculating the polynomial can lead
to similar problems if different regions of the surface ap-
proach each other. As a result, points whose Euclidean dis-
tance is small are taken into consideration even though their
Riemannian distance is large.

We aim at curing the situation described above with an
improved projection method that does not involve solving a
non-linear optimization problem. The method makes use of
connectivity information and uses a variable degree for the
polynomials.

3. Our new projection

The problems with the MLS approach are caused by miss-
ing connectivity information on P . With this information it
is easier to create the tangent plane and an improved polyno-
mial free of points with high Riemannian distances. Our pro-
jection is based on a precalculation step independent of the
triangulation parameters which needs to be done only once
per data set. This results in an efficient projection method
that makes use of the precalculated data.

First, in our precalculation step, we reconstruct the sur-
face locally at each point pi ∈ P with bivariate polyno-
mials of variable degree. We do so by applying weighted
least squares in a local coordinate system (LCS). To find a
good approximation of the normal and to correctly weight
the points by Riemannian distance, we establish inter-point
connectivity using the Cocone algorithm. Roughly speaking,
this algorithm creates a triangulation from double cones cen-
tered at the pi and which are aligned orthogonally with the
poles of each Voronoi cell (the Voronoi vertex with the far-
thest distance to pi). Triangulations obtained from the Co-
cone are not free from overlaps and in its basic version, it is
only suitable for noise-free surfaces. To actually perform the
projection of a point r onto the surface, we find the closest
point pi ∈P and project r onto the polynomial surface of pi.
In order to compensate for single outliers in the projections,
we consider the polynomial surfaces of neighbours of pi and
use the component-wise median of the projections.

The Cocone algorithm guarantees that points are con-
nected topologically correct if P is an ε-sample with ε ≤
0.08, which means that for each point s on the surface, there
exists a point p ∈ P which is closer to s than ε times the
distance from the medial axis to s. MLS guarantees correct
reconstruction for ε ≤ 0.01 if point normals are associated
with P . In practice the Cocone performs well with ε up to
0.5 [ABK98]. Point normals are approximated as a byprod-
uct and can be used to initially align the LCS of the polyno-
mial in the next step.

Once inter-point connectivity is calculated we transform
the points of P into the LCS centered at pi and the z-axis
is aligned with the normal approximated by the Cocone al-
gorithm. We approximate the surface locally at each point
pi ∈P with a bivariate polynomial p(x)∈∏

2
d of variable de-

gree d which also provides a surface normal and curvature.
We use this normal to improve the orientation of the LCS if
the angle between the z-axis and the surface normal exceeds
a specified threshold. We refer to the transformation into the
LCS of a point p j ∈P as (x j, f j) with x j = (x j,y j)∈R2 and
f j ∈ R. To find the local surface approximating polynomial
we minimize the sum of weighted error squares

e =
N

∑
j=1

(
p(x j)− f j

)2 ·θ
(
R(pi,p j)

)
, (1)

with the Riemannian distance R and the weighting function
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θ(d). As in similar applications we suggest to set θ(d) to

θ(d) = e−
d2

h2 (2)

whereas h can be interpreted as smoothing factor. By default
h should be set to the local sample spacing at pi but can be
increased to smooth out measurement noise [ABCO∗03].

We refer to the polynomial base of p(x) depending on the
degree d as b(x) = (1,x,y,x2,xy,y2, . . .) and to the polyno-
mial coefficients as c = (c1,c2,c3,c4,c5,c6, . . .). Therefore
p(x) = c ·b(x)T and we can rewrite (1) as

e =
N

∑
j=1

(
c ·b(x)T − f j

)2
·θ

(
R(pi,p j)

)
. (3)

To find the coefficients minimizing the error square sum we
set the partial derivatives

(
∂e
∂c1

, ∂e
∂c2

, . . .
)

to zero which leads
to the linear system of equations

Ac = d (4)

with

A =
N

∑
j=1

b(x j)
T b(x j) ·θ

(
R(pi,p j)

)
, (5)

d =
N

∑
j=1

b(x j)
T f j ·θ

(
R(pi,p j)

)
. (6)

Theoretically, every point is taken into account in order
to find the minimum error sum. However, since equation (2)
decays fast, in practice it is sufficient to only consider points
in a certain distance to pi. The error in a distance of 4h is
almost negible and for 6h it is around double precision.

We approximate the Riemannian distance with the Eu-
clidean distance but only consider candidate points p j if
there exists a path (given through inter-point connectivity)
from pi to p j and there is no point pk on the path with
‖pk − pi‖ > rc, where rc is the maximum point distance.
To ensure a good polynomial approximation and to prevent
the triangulation from overlapping, points are iterated in a
breadth-first search, projected onto the xy-plane and only
collected if the projection does not lie within the convex hull
of already collected points (see Fig. 2 for an 2D-example).

pi pi

Figure 2: Left: overlapping points in the coordinate sys-
tem prevent a good approximation. Right: (green) points not
leading to overlaps are collected; (red) points intersecting
the convex hull (orange) are rejected.

Solely solving equation (4) does not automatically lead

to a good local surface approximation. As pointed out in
[HZDS01, DZ04], a surface approximation can fail if all x j
in the local coordinate system are near an algebraic curve of
same or lower degree than d. An example is given in Fig. 3.
We can use the matrix condition κ(A) as criterion to detect
if the collected points are near an algebraic curve. However,
high matrix conditions are not only caused by points in the
vicinity of an algebraic curve but also from inappropriate
scaling. To avoid high κ we scale the points ofP when trans-
forming them to the LCS We observed that κ is lowest if the
average point spacing is approximately 1. The matrix condi-
tion is then a reliable criterion to check if the points lie near
an algebraic curve.

Figure 3: Points are near an algebraic curve. They might lie
on a plane (left) as well as on a paraboloid (right).

We build matrix A according to equation (4) starting with
an initial degree dmax and check if κ(A) exceeds a thresh-
old (which is independent of P). In this case, we reduce the
polynomial degree by one and rebuild A. We repeat this step
until the condition is below the threshold or we reach a de-
gree of 1. We note that reasonable matrix conditions lie be-
tween 200 and 400 and we can set dmax to around 5. The
above strategy allows us to use polynomials of high degree
that nicely adapt to local points without the side-effects var-
ious methods not considering matrix conditions suffer from.

Figure 4: The Bunny ear. Left: MLS. Right: our method.

4. Results

We implemented a mesh generation tool CloudMesh
[Uhr08] with an advancing front algorithm based on our pro-
jection method. Triangulations using MLS were performed
with Afront [SSFS07]. We provide results of our experiments
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with a collection of standard data sets, namely the Stanford
models Lucy, Bunny and Dragon (see Figures 1, 4 and 5).

Establishing connectivity and polynomial surface recon-
struction form up the preprocessing step. Here the compu-
tation time linearly depends on the number of points in P .
Triangulation time depends on the number of points as well
as generated triangles. As a result, objects with many highly
curved areas have increased triangulation time, see Table 1.
All timings were done on a single core 2.4 GHz AMD CPU.
We note that the preprocessing step is easily parallelizable.
The given triangulation times are not optimal, since we vi-
sualize intermediate results during the triangulation process.

Data Set Bunny Lucy Dragon
Points 34,834 262,909 435,545
Connectivity 0:32 4:15 7:26
Reconstruction 7:08 50:14 84:52
Triangulation 1:55 29:55 18:00
Vertices 24,802 442,422 198,157
Triangles 49,421 881,725 389,709

Table 1: Timings and results for various data sets.

Screenshots in Fig. 4 show that our approach is more ro-
bust and improves the triangulation results especially in re-
gions of high curvature. A close-up of the dragon head (see
Fig. 5) confirms that graduation in triangle size is more plau-
sible due to polynomial reconstruction with variable degree.

Figure 5: The Dragon head. Left: MLS. Right: our method.

5. Conclusion
We showed that there are problems with current MLS projec-
tion methods typically used for advancing front algorithms.
We argued that these problems are related to missing con-
nectivity information and presented a technique that creates
inter-point connectivity in a first step which is used to cre-
ate robust polynomial approximations of variable degree of
the surface. In contrast to MLS, generation of the surface ap-
proximation does not involve a non-linear (or similar) opti-
mization problem. Calculations are done in a preprocessing
step only once per point set. Projections can then be per-
formed efficiently and robustly with user-controlled granu-
larity of the generated mesh.
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