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Abstract

We present a novel multi-view photometric stereo tech-
nique that recovers the surface of textureless objects with
unknown BRDF and lighting. The camera and light posi-
tions are allowed to vary freely and change in each image.
We exploit orientation consistency between the target and
an example object to develop a consistency measure. Mo-
tivated by the fact that normals can be recovered more re-
liably than depth, we represent our surface as both a depth
map and a normal map. These maps are jointly optimized
and allow us to formulate constraints on depth that take
surface orientation into account. Our technique does not
require the visual hull or stereo reconstructions for boot-
strapping and solely exploits image intensities without the
need for radiometric camera calibration. We present results
on real objects with varying degree of specularity and show
that these can be used to create globally consistent models
from multiple views.

1. Introduction
Image-based reconstruction is a well-researched area of

computer vision. Significant progress has recently been
made to extend (multi-view) stereo and photometric stereo
methods to more general settings. Our goal is to recover
the surface of objects with non-Lambertian BRDFs. Re-
constructing accurate geometry for such objects is still a
very challenging task under unknown lighting conditions if
no special setups such as ring lights or calibration steps are
employed. For textured objects, techniques such as (multi-
view) stereo achieve reconstructions of good quality. In-
stead, we focus on challenging textureless objects where
photoconsistency tests such as NCC or SSD fail. Classical
photometric stereo, in contrast, works well in textureless re-
gions but cannot directly recover depth information.

To address these issues, we place a reference object (the
“example”) with known geometry in the scene. This makes
a calibration of the camera response unnecessary which is
required by many photometric stereo techniques. We match
per-pixel appearance profiles from varying viewpoints with
different illumination, using the matching error between the
example and target object as consistency measure. While

this error is not very discriminative for reconstruction of
depth, we show that normals can be recovered very accu-
rately in the vicinity of the true surface.

This approach eliminates several restrictions of the voxel
coloring-based work by Treuille et al. [29]. Most notably,
we operate with general camera and light source positions
and use reliably recovered normals as soft constraints for
depth recovery. We also reconstruct per-view depth maps
instead of a voxelized global model, which has several ad-
vantages: There is no need to choose the size of the voxel
grid as we work with natural pixel resolution. This leads
to less memory consumption, and the algorithm is trivially
parallelizable over the individual views. The resulting depth
maps can be integrated using standard mesh-merging tech-
niques. In contrast to other multi-view photometric stereo
approaches [18, 33, 24, 32, 8, 14], we do not need to sepa-
rately estimate an intermediate proxy geometry (using other
approaches) from which the true surface has to be obtained
later on in an additional refinement step. Instead, we couple
geometry and normal reconstruction and recover a surface
directly from the input data. Our contributions are:

• We present a novel multi-view photometric stereo
technique based on matching per-pixel appearance
profiles, which makes no assumption about the place-
ment of distant light sources or cameras.

• We analyze the relation between matching ambiguity
and normal errors in the multi-view setting and de-
velop an energy formulation that exploits the fact that
normals can be recovered more reliably than depth.

• Our technique uses an example object to handle arbi-
trary uniform BRDFs and also avoids any light or ra-
diometric camera calibration. It thus removes the com-
mon assumption of a linear camera response which is
often hard to obtain accurately.

We proceed by discussing previous works in this area. We
then motivate and explain our approach in Section 3 and
provide implementation details in Section 4. Finally, we
evaluate our results in Section 5 and close with a conclusion.

2. Related Work
Photometric Stereo: Research related to photometric
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stereo has started in the eighties with the initial work by
Woodham [30]. It relies on varying image intensities to
estimate surface orientation and has since then been gen-
eralized in many ways. One main direction of research is
concerned with jointly recovering unknown shape and re-
flectances [6, 2, 11, 27]. Another direction focuses on a less
restrained capture setup with arbitrary and unknown illumi-
nation [7, 26, 23]. Only few works address both challenges
simultaneously. They often rely on pixel intensity profiles,
as we do. An elegant solution was proposed by Silver [28]
and popularized by Hertzmann and Seitz [9, 10]. They place
a reference object in the scene and match profiles with the
target. We draw inspiration from these works, which make
light calibration unnecessary and can handle arbitrary re-
flectance properties. Similar approaches that do not require
a reference object have been presented by Sato et al. [25]
and Lu et al. [19]. They exploit the geodesic distance of
intensity profiles and its relation to surface shape.
Single Image Reconstructions: Shape from shading and
intrinsic image decomposition methods, e.g. [21, 3], oper-
ate on single images. They require stronger regularization
to compensate for less available data. Johnson and Adel-
son [13] calibrate against a sphere with the same BRDF
similar to our setup. Like the other shape from shading
techniques, it could be applied to each view individually
in a multi-view setting. Such an approach would, however,
be unable to exploit parallax for depth estimation. Exten-
sions to multiple images usually require the depth to be
known beforehand (e.g. Laffont et al.’s intrinsic image tech-
nique [17]) and/or a fixed, calibrated lighting environment
as presented by Oxholm and Nishino [22].
Multi-View Photometric Reconstructions: Approaches
that fuse multi-view cues with photometric stereo are faced
with the challenge of finding correspondences between pix-
els in different images. However, if these were known ac-
curately the problem of shape reconstruction would already
be solved. Therefore, most techniques rely on some kind
of proxy geometry that gets refined using shading informa-
tion. Lim et al. [18] use a piecewise-planar initialization
constructed from tracked feature points. Other common
choices are depth maps from structured light [33], multi-
view stereo reconstructions [24], simple primitive meshes
[32], and the visual hull computed from silhouettes [8].
None of these approaches use photometric cues for depth
estimation. Furthermore, feature extraction, e.g. [31], or
stereo reconstruction, e.g. [5], fail for textureless objects.
The visual hull only provides an adequate initialization if
the object is observed from considerably varying angles.

Jin et al. [12] use a rank constraint on the radiances in
a surface patch collected over multiple images to estimate
depth. They assume constant illumination in all images
whereas photometric stereo methods exploit the variation
of the lighting. Only few works attempt to use varying pho-
tometric information for depth estimation. Recently Zhou

et al. [34] have presented an appearance acquisition method
that collects iso-depth contours obtained by exploiting re-
flectance symmetries in single views. This requires multi-
ple images from the same viewpoint and a calibrated light-
ing setup. In our case, the camera and light can both move
freely. Joshi and Kriegman [14] use the rank-3 approxima-
tion error as an indicator of surface depth but are limited to
diffuse surfaces. A graphcut optimization is then applied to
obtain a discrete depth map as initialization for photometric
stereo. Finally, both sources are fused using the integration
scheme presented by Nehab et al. [20]. In contrast, we do
not need the reflectance to be represented as a rank-3 ma-
trix and our surface optimization is directly coupled with
the actual image information: We use intensities even dur-
ing integration similar to Du et al. [4] who define a com-
bined energy in a two-view setting. An important differ-
ence that sets us apart from all other works that do not rely
on intensity profile matching is that any kind of radiometric
calibration or linear image intensities becomes unnecessary.

Only one other work approaches the multi-view pho-
tometric stereo problem by exploiting an example object:
Treuille et al. [29] employ the error of matching appearance
profiles as introduced by Hertzmann and Seitz [9] and use
it as consistency measure in a voxel coloring framework.
This approach has, however, several drawbacks: First, it
poses restrictions on camera placement to ensure that oc-
cluded voxels are processed in the correct order. We al-
low arbitrary (distant) camera placements and rely solely
on generic outlier removal to handle occlusions and shad-
ows. Second, their final scene representation is a voxel grid.
The reconstruction cannot be transformed into a surface and
the normals can only be used for rendering. Most impor-
tantly, their approach cannot use the more reliable normal
information during depth recovery, which makes it prone to
errors in the reconstructed geometry. Our approach differs
from [29] in scene representation (voxels vs multiple depth
maps), visibility handling (geometric vs outlier-based), and
the reconstruction algorithm (voxel coloring vs per-view
optimization).

3. Approach
Our goal is to recover the surface of a textureless object

solely from a set of images under varying illumination and
from different viewpoints. We also want to keep the cap-
ture procedure simple and straightforward. In practice this
means to avoid any calibration of light sources or camera
response curves. If we also allow for non-diffuse surfaces,
none of the existing techniques can be applied. We base our
approach on orientation consistency as a depth cue which
brings many of the desired properties and thus place a refer-
ence object with known geometry in the scene (Figure 1).

Let I ∈ {I1, . . . , Im} denote a master image and r the
ray corresponding to pixel p. We assume that the camera
projection operators {P1, . . . , Pm} are known. For a depth



Figure 1. Left: Target object and a reference sphere with same
reflectance. The high-frequency pattern at the bottom is used to
estimate camera pose. Right: Some samples from the database of
reference profiles (dashed) and a candidate profile (solid).
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Figure 2. The error of best matching reference profiles along a ray
from the camera has a wide basin with very similar error scores.
The vertical lines correspond to the depth values in Figure 5.

candidate dwe project its 3D position d·r into allm images
to obtain intensities Ij(Pj(dr)), j ∈ {1, . . . ,m} in each of
the three color channels. We call the concatenation of the
3m values into a vector A(dr) an appearance profile.

As a reference object we use a sphere with known po-
sition and radius. In theory, it should have the same re-
flectance properties as the target object but Section 5 shows
that this assumption can be relaxed in practice. For each
pixel in I that is covered by the sphere, we project the corre-
sponding sphere point into all images and form a reference
appearance profileB. This yields a database of profiles with
attached normals ñ computed from the sphere. Some of
these reference profiles B together with a candidate profile
A are visualized in Figure 1.

We assume a distant but otherwise unknown point light
source Lj . Shadows and inter-reflections are handled as
outliers during matching without explicit treatment.

3.1. Appearance Matching
Assuming an orthographic camera, the intensity of a sur-

face point dr with normal n is given by

Ij(Pj(dr)) = fj

(∫
Lj(ω)ρ(ω, vj , n)〈n, ω〉dω

)
(1)

with camera response fj , BRDF ρ, and camera viewing di-
rection vj . Both, light and camera position, change from
image to image as indicated by the index j. Note that the
right hand side depends only on the normal and not the 3D
position. Thus, for a point with the same normal on the sur-
face of the reference object the intensity is the same. This
observation is called orientation consistency.

This means that we can find a matching profile B in our
database for anyA(dr) that originates from the true surface.

For a false depth candidate d it is unlikely to find a good
match, because each view actually observes a different point
on the surface. We denote the intensity residuals ej = Aj−
Bj and omit the color channel indexing for simplicity.

Treuille et al. [29] use the normalized L2 distance as a
matching error. The contribution of ej is not considered
during matching if the corresponding voxel would actually
be occluded in image Ij . We do not have occlusion infor-
mation available for the components of the target profilesA.
Instead, we turn off residuals ej if the corresponding normal
to the reference B would have been observed at a grazing
angle in the j-th view. Furthermore, we only use the K best
of the remaining residuals:

Ematch(A,B) =
1

K

K∑
i

e2ji . (2)

K is a percentage of all views, typically 60%, which acts
as outlier handling. For K < 3, we set Ematch(A,B) =∞,
because normals cannot be recovered unambiguously.

3.2. Energy Formulation

Along a ray r the best matching error at position dr

EM (r, d) = min
B

Ematch(A(dr), B) (3)

gives an indication whether we are on the true surface or
not. Unfortunately, the matching error is not very discrimi-
native as shown in Figure 2. We do not observe a clear min-
imum but rather depth values with a wide basin of low error.
Accordingly, choosing the depth with smallest matching er-
ror leads to a very inaccurate and noisy depth map. The
standard way to deal with noise and unreliable estimates,
e.g. in stereo, is to employ regularization that favors smooth
surfaces. We have the advantage of additional information
in the form of normals associated with the best match from
the database. To exploit these, we formulate an energy that
is defined on both a depth map D and a normal map N .
This can be interpreted as attaching a small oriented plane
(D(p), N(p)) to each ray, see Figure 3, and allows us to en-
courage integrability without strictly enforcing it since this
would be harmful at depth discontinuities.

The key finding in our setting is that exactly the same
reasons that make depth estimation hard make normal esti-
mation easy. Figure 4 illustrates this insight for three dif-
ferent points along the same ray. In Figure 4a all cameras
observe the same point on the true surface. The matching
error will be low and the normal ñ associated to the match is
the correct surface orientation n. If we move slightly away
from the surface as shown in Figure 4b, each camera ac-
tually observes a different surface point but with normals
that are still close to the true one. Accordingly, the inten-
sity profile will be very similar to the previous one. Thus,
the matching error is again low which makes accurate depth
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Figure 3. Each ray has a little plane attached. The estimated depth
of neighboring pixels should be close to the intersections of their
rays with the plane.

(a) (b) (c)
Figure 4. Projections at different depth. (a) All cameras observe
the same point. The matching error is zero. (b) Cameras observe
different points, but with similar normals. The matching error is
still low. (c) Cameras observe points with significantly different
normals. The matching error is high.

estimation so difficult, but the associated normal is close
to n. This reasoning breaks down if the point is really far
away from the surface as in Figure 4c. All cameras observe
surface points with very different normals and the normal
associated with the best match will not be close to any of
them. In this case the matching error itself is high.

Figure 5 shows this effect on real data. For a ray indi-
cated by the dot at pixel p, the best matching normals are
visualized for 5 depth values corresponding to the plot in
Figure 2. We observe that the normals are almost constant
in the region of low error. To exploit this finding we focus
our optimization on the normals and use the matching error
only as a weak constraint. Based on these considerations,
we propose the following energy formulation

E(D,N) = EM (D) + αEcopy(D,N) + βEcoupling(D,N).
(4)

EM (D) is the sum of matching errors over all rays for the
current depth estimates, which involves matching against
the intensity database for a single evaluation of EM (r, d):

EM (D) =
∑
r

EM (r, d)2. (5)

The second term effectively copies the normal ñ asso-
ciated to the best matching reference profile, i.e. B =
argminEmatch, to the current estimate n = N(r(p)) in
the normal map but also allows for deviations from the dis-
cretely sampled normals on the sphere:

Ecopy(D,N) =
∑
r

‖n− ñ‖2. (6)

The best matching ñ also depends on the depth d which
we omitted here for clarity. Internally, we parametrize the
normals in angular coordinates to ensure unit norm.

The third term couples depth and normals. We assume
that the surface is locally planar at a pixel p, but not nec-
essarily fronto-parallel. Since real cameras only approxi-
mate an orthographic projection, we consider perspective
rays here that all originate at the camera center. We look at
a neighboring pixel q ∈ N (p) and intersect its ray r(q) with
the plane defined by (D(p), N(p))

D̃(q) = D(p)
〈r(p), N(p)〉
〈r(q), N(p)〉

=: D(p)
s(p)

s(q)
. (7)

The intersection point D̃(q)r(q) should then be close to the
current estimate D(q)r(q) as shown in Figure 3. After mul-
tiplication with the denominator we obtain the following
coupling term

Ecoupling(D,N) =
∑
p

∑
q∈N (p)

Ecoupling(p, q), (8)

Ecoupling(p, q) =
(
D(p)s(p)− D̃(q)s(q)

)2
. (9)

The energy completely and only depends on the actual
captured image intensities. This is in contrast to approaches
that start with a proxy geometry and then obtain the final
surface through a refinement step [14, 24]. Those exploit
the additional knowledge about the surface orientation only
in this final phase after fundamental decisions on depth have
already been made. This can lead to problems if the initial-
ization is inaccurate as in our case. Therefore, we make
all decisions at the same time and relate depth and normals
directly to the input intensities.

4. Implementation and Experiments
Optimization: We use the Ceres [1] non-linear optimiza-
tion package to minimize the energy in Equation (4) with
the Levenberg-Marquardt algorithm. However, our formu-
lation is non-convex and has many local optima. It is there-
fore crucial to obtain a sufficiently good initialization for
the optimization. We define a depth range which we sample
in discrete steps similar to a plane sweep and evaluate only
the term EM . For each pixel we use the depth that results
in the lowest error and copy the corresponding normal from
the reference object. As already mentioned, these estimates
are rather noisy in depth. Still, the normals provide a suit-
able starting condition. Furthermore, we allow the solver
to make jumps that temporarily increase the energy if it ul-
timately leads to a smaller error. This helps to avoid local
optima at the cost of increased run time. We found a total
iteration count of 50 to be a good trade-off between quality
and computation time. This already decreases the energy by
one to two orders of magnitude, c.f . Table 1, and we did not



Figure 5. Along the ray going from the camera through the pixel marked in green, the normal corresponding to the best matching reference
profile is visualized (red) for increasing depth. Images from left to right correspond to depth a-e in Figure 2. Close to the surface, normals
are very stable and similar to the true one.

Dataset Pixels Energy after iteration Time
in mask 0 10 50 [min]

Bottle 29k 3263 1129 164 459
Diffuse Owl 48k 7712 2408 562 286
Shiny Owl 13k 12331 274 46 130
Spheres 12k 589 49 47 41

Table 1. Computation times and optimization performance.

observe significant improvements through more iterations.
Figure 10 illustrates the initialization and the final result.
In our prototype, we use images of size 1400 × 930 and
700× 465. This is to reduce run time since the main bottle-
neck lies in the matching of each candidate profile against
all reference profiles. Acceleration with spatial data struc-
tures is difficult, because our matching is not a true metric
due to the outlier tolerance.
Assumptions in Practice: In Section 3 we made the as-
sumptions that camera parameters and the position of the
reference sphere are known. To obtain these parameters,
we place a target with a high frequency texture in the scene,
see Figure 5. We then extract features and apply structure
from motion followed by bundle adjustment. The reference
sphere is located by fitting conics to the outline of the sphere
in the images. Afterwards, the rays through the sphere cen-
ter are intersected to find its position. This procedure has
the additional advantage of providing us with metric scal-
ing information based on the known radius of the sphere.
The metric coordinate system then helps to define the depth
range during initialization of the optimization.
Preprocessing: Including all possible images in the recon-
struction of a given master view not only leads to increased
processing cost, but it can also reduce robustness. If the par-
allax between two views is too large, chances are that they
actually observe different parts of the surface. We avoid
measuring consistency between such views and automati-
cally discard images with a viewing direction that deviates
more than 50◦ from the master view. In addition, we manu-
ally define a mask for the object in the master view.
Parameter Settings: The weighting factors in Equation (4)
are chosen according to the range of each sub-term. The
input intensities and EM are in [0, 1]. Ecopy is in [0, 2] since
we do not enforce front-facing normals. We assume that

depth is measured in meters, but the typical deviations be-
tween neighboring pixels are only fractions of millimeters.
Therefore, we scale Ereg to lie in a similar range as EM and
Ecopy. In summary, we set α = 1 and β = 5000 in all our
experiments. For much larger β the surface moves away
from its true position whereas much smaller values result in
more noise. Another parameter is the depth range for the
initialization. We manually select a range that encloses the
object by 10-15 cm and sample it in 200 steps.

5. Results
5.1. Experimental Setup

For all experiments we used a point light source at a
distance of 5 m to approximate distant illumination. We
placed the reference and target objects close together to en-
sure equal lighting conditions. Figure 6 shows some ex-
amples of the input images. The bottle, shiny owl, and
spheres datasets were captured by moving the camera and
light source in each shot and contain ∼15 images. For the
diffuse owl dataset we captured 39 views from 360◦ us-
ing a turntable. We used a Canon EOS 5D except for
the bottle dataset which was captured with a Canon EOS
700D. The corresponding lenses have focal length 135 mm
and 160 mm (in 35 mm equivalent) and approximate an or-
thographic camera. All results are computed on non-linear
JPEG images. We intentionally did not remove gamma cor-
rection since dealing with non-linear intensities is one of the
strengths of our technique.

5.2. Evaluation
To create a textureless target object we spray painted a

bottle and an example sphere with brown paint such that
they have a BRDF with a broad highlight1, see Figure 6a.
The shape of the bottle is rather uniform and can be re-
covered quite well as shown in Figure 7. Even the fine
grooves are visible in the normals and the triangulated depth
map. Our algorithm is also able to cope with differences in
BRDF between the target and the reference sphere to a cer-
tain degree. We captured an additional dataset that contains
the brown bottle (bottle2) and a white perfectly Lamber-
tian sphere. We manually adjusted the albedo in the ap-

1The dataset is available at www.gris.informatik.
tu-darmstadt.de/projects/mvps_by_example.

www.gris.informatik.tu-darmstadt.de/projects/mvps_by_example
www.gris.informatik.tu-darmstadt.de/projects/mvps_by_example


(a) (b) (c) (d)
Figure 6. Datasets with varying reflectance. (a-d) Cropped input images for the bottle, diffuse owl, shiny owl, and spheres datasets corre-
sponding to the depth and normal maps shown in Section 5. We use the textured patterns in each scene to estimate camera pose.

Figure 7. Results for the bottle dataset. Left to right: Colored depth
map from blue (near) to red (far), the normal map, and a rendering
of our triangulated geometry from a novel view.

pearance profiles of the bottle to approximate a white color.
Note that this does not change the reflectance behavior and
does in particular not change the (occurrence of) the spec-
ular highlight on the bottle. Figure 8 shows results that are
only slightly degraded compared to the bottle dataset (see
Figure 7) for which target and reference had the same re-
flectance. We also acquired a ground truth model for the
bottle and bottle2 datasets with a structured light scanner
and registered it using an iterative closest point algorithm.
Figure 9 shows two planes that cut through the ground truth
and our depth maps. We observe that the deviations are less
than 2.5 mm. This is at the scale of the alignment error,
given that the camera was 2 m distant.

The diffuse owl is a 12 cm tall porcelain figurine which
we spray painted with a diffuse green color to create a ho-
mogenous reflectance, see Figure 6b. The initialization in
Figure 10 already provides good normals in many places,
but our final result shows clear improvements especially
at difficult regions such as the feet and around the eye.
The rendering shows fine details and only some artifacts
at depth discontinuities. After we captured the diffuse owl
dataset, we applied a transparent varnish to the figurine
which makes it appear glossy as shown in Figure 6c. This
novel shiny owl dataset demonstrates our performance on
non-diffuse surfaces. Even small details such as the feath-
ers are clearly recognizable in Figure 11.

Figure 8. Matching different BRDFs. Left to right: An input image
showing the diffuse white sphere next to the slightly shiny bottle,
the recovered depth map (blue: near, red: far), the normal map,
and a rendering from a novel view point.
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Figure 9. Left: Ground truth acquired from structured light scan-
ning with horizontal (green) and vertical (red) profile lines. Right:
The vertical (top) and horizontal (bottom) cuts through the ground
truth (colored) and our depth map (black) show a deviation of less
than 2.5 mm for the bottle (solid) and bottle2 (dashed) datasets.

(a) (b) (c) (d)
Figure 11. (a-c) Results for the shiny owl dataset. Even for shiny
surfaces, fine details can be recovered. (d) Novel view of a glob-
ally consistent model obtained by merging 17 depth maps of the
diffuse owl dataset.

Integrating normal maps may result in globally deformed
surfaces if it is not sufficiently constrained by depth infor-
mation [16]. This can lead to problems if several views’ ge-



Figure 10. Improvement through optimization. From left to right: The initial depth and normal map for the diffuse owl dataset; our final
depth and normal map after 50 iterations; the triangulated depth map rendered from a novel view.
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Figure 12. Left: Resulting normal map for the spheres dataset.
Middle: The angular error compared to an ideal sphere. Right:
Histogram over all angular errors below 30◦ for the sphere.

ometry is merged into a global model. Our integrated depth
maps, however, are very consistent. Figure 11d shows a
global mesh fused from 17 views. All depth and normal
maps were projected to oriented 3D points and then pro-
cessed using Poisson Surface Reconstruction [15].

To assess the maximal quality we can expect in practice,
we use two transparent Christmas balls lacquered from the
inside with acrylic paint, see Figure 6d. We use the left
one as reference object and reconstruct the one on the right.
This way we can quantitatively compare the reconstructed
normals in Figure 12 against those of an ideal sphere whose
position we obtain as described for the reference sphere.
Small errors in that estimated position lead to a peak at 5◦

for the histogram of angular deviations in Figure 12. Al-
though the target is not perfectly round and its reflectance
does not completely match the reference due to varying
thickness of the dye coating, the overall deviation is low.
Most of the larger errors—besides at the boundaries—occur
at the sphere center where the over-exposed highlight was
observed most often.

Matching appearance profiles in a multi-view setting has
also been studied by Treuille et al. [29]. Unfortunately,
that work does not contain a quantitative evaluation that we
could compare against. We reimplemented their technique
and show the results in Figure 13. The diffuse owl dataset
contains views from all directions. Voxel coloring produces
a reasonable but discretized reconstruction. Detail infor-
mation encoded in the normals is only accessible for ren-
dering. In contrast, our energy formulation is continuous
in depth and thus leads to a fundamentally different opti-
mization problem. We provide a quantitative comparison

(a) (b) (c) (d)
Figure 13. Comparison to Treuille et al. [29]. (a) The voxel-based
reconstruction of the bottle rendered using point splatting. (b) Our
reconstruction shown from the same view. (c) Geometry compari-
son: several horizontal slices through the bottle reconstructed with
our approach (green), Treuille et al. [29] (red), and structured light
(black) are plotted on top of each other. (d) The marching cubes
reconstruction of the volume by Treuille et al. is blocky as shown
for the diffuse owl dataset (left). The attached normals do not con-
tribute to the geometry and can be only be used for shading (right).

with our reconstruction for the bottle where ground truth is
available. This dataset contains only 14 cameras that ob-
serve the object mostly from the front. It demonstrates that
our approach copes well with a restricted set of camera po-
sitions. The voxel reconstruction is not able to recover the
true shape because the matching error is not very discrim-
inative. In contrast, our approach enforces consistency of
reconstructed normals and depth which provides a clear ad-
vantage.

6. Conclusion

In this paper we have shown that it is possible to recon-
struct detailed geometry of objects observed from multiple
views with challenging, unknown reflectance properties and
lighting by matching with an example object. Our formula-
tion is continuous in depth and operates directly on image
intensities. In contrast to other methods, the final surface
can therefore be optimized without referring to proxy ge-
ometry obtained from non-photometric techniques based on
texture information or silhouettes. Representing the surface
as depth maps instead of as a global model allows the use of



well-understood image-based smoothness constraints and is
easy to integrate with existing stereo approaches. Although
we need a reference object with similar reflectance (the “ex-
ample”), we believe that the generality that such an object
offers in terms of unknown light setup and camera response
are well worth the effort. Our results also show that the
requirement of similar reflectance can be relaxed without
sacrificing too much quality.

The computation times for a single view are quite
high because we exhaustively match the per-pixel profiles
against all reference profiles. In the future, we would like to
speed up our prototypical implementation with GPU paral-
lelization. The current formulation allows depth discontinu-
ities but assigns them a large error. Thus, at boundaries and
steep edges sometimes artifacts can occur. We would like to
experiment with robust loss functions to address this in the
future. Finally, it would be interesting to extend this tech-
nique to objects with mixed materials, e.g., by introducing
a second reference object with a different BRDF.
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